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Abstract. The quantization of the free relativistic spinning particle is revised on the basis of
a group approach to quantization. In momentum space, the wavefunctions provide the minimal
canonical representation of mass m and spin § of the Poincaré group 'PI . The guantization in
configuration space requires, as in many other physical systems, polarizations of higher-order
type. This higher-order polarization technique turns out to be a natural framework for studying
focalizability and to provide a pesition operator.

1. Introduction

Some years ago a considerably detailed analysis of the quantum dynamics of the (spiniess)
free relativistic particle was developed in [1]. The aim of that paper was to clarify the
group-theoretical structure of this elementary system. The starting point of such a study
was clearly the 10-parameter Poincaré group, or, more precisely, a pseudo-extension of
it. The wavefunctions provided the (spin-zero) irreducible representations of the Poincaré
group in momentum space.

The framework used in [1] is a group approach to quantization (GAQ) [2, 3], a formalism
in which a Lie group (or supergroup) law is the only input of the theory. Essentially, GAQisa
definite prescription to go from a group law, which is intended to be the ‘relevant’ symmetry
of a given physical system, 1o its unitary irreducible representations in a Hilbert space made
up only of functions on the group manifold, thus achieving the complete solution to the
quantum-mechanics problem, More precisely, GAQ starts with a Lie group G containing a
preferred U(1) subgroup as for the case of a U(1) central extension [4] (or pseudo-extension).
This U(1) subgroup accounts for the usual phase invariance of quantum mechanics. The
mere existence of this subgroup allows us to distinguish between two types of variables in
the group: those whose corresponding generators produce a central term on the right-hand
side of their commutator, and the remainder. The former corresponds to the set of canonically
conjugate pairs of coordinates and momenta, and the latter to variables playing  role similar
to that of time. Time and rotations are examples of this second type of {non-dynamical)
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variables for the spinless free particle. From a mathematical point of view we can say that
the group Gisa principal bundle [5] with structure group (or fibre) U(1). If G is a central
extension of G , the kemel of the Lie algebra co-cycle [6] E : G x G — R, which is known
as the characteristic subalgebra Gg , generates the subgroup of non-dynamical variables.

GAQ then continues taking complex function ¥ on G that are homogeneous of degree
one in ¢ € U(1l) {equivariance condition). This means, in differential form, that E¥ =
where & is the U(1) generator. The Hilbert space is now obtained by imposing the so-called
full polarization condition, 1. e., a maximal restriction that can be imposed on functions ¥ so
as to fully reduce the quantum representation, A full polarization P is a maximal subalgebra
of left-invariant vector fields X containing Go and excluding =, and the wavefunctions
must be annihilated by X* in P . This definition generalizes the analogous concept in
ordinary geometric quantization [7-10] in that our P contains the non-symplectic variables
associated with Gg . Since right-invariant vector fields commute with left ones, the former
leave the Hilbert space invariant and achieve the quantum representation. The left-invariant
one-form ® dual to E also generalizes the quantization form of geometric quantization (d®
is no longer a symplectic form and its kernel, or more precisely its characteristic module,
Ker d©® N Ker @, is generated by a basis of Gg ).

This paper is devoted to the study of the spin under GAQ to account for a group-theoretic
formulation of relativistic quantum mechanics without any reference to fermionic variables.
We study first, in section 2, the non-relativistic case by introducing a pseudo-extension
of the SU(2) subgroup (SU(2) is semi-simple and therefore all the ceniral extensions are
trivial) of the Galilei group parametrized by a (necessarily) haif-integer j. The objective
of this extension is to take two SU(2) generators out of the characteristic subalgebra and to
convert the corresponding parameters to a canonically conjugated pair of a coordinate and
a momentum which provides the spin degrees of freedom. We have included an appendix
devoied to the general study of the SU(2) representations on the basis of GAQ.

The introduction of a SU(2) pseudo-co-cycle on the Poincaré group is carried out in
section 3 without any special difficulty. The only difference with respect to the Galilean
situation is the complexity of the group law and the fact that now a ceniral term appears
on the right-hand side of a commutator between two boosts, We find that the resulting
quantum representatxon is the minimal canonical representation of mass m and spin j of
the Poincaré group 'P+ [11-13] in momentum space (we discard the discrete elements for
the sake of simplicity and consider only a single orbit), Although the wavefunctions factor
out in orbital and spin parts, as in the non-relativistic case, the operators mix both parts
properly.

The quantization of the relativistic spinning particle in configuration space requires, as
in many other physical systems, the introduction of the concept of higher-order polarization,
a congept criginally introduced to solve anomaly problems in both finite- [14] and infinite-
dimensional quantum systems [15].

The anomaly problem can be viewed in any geometric approach to quantization {this
is an unsolvable problem in geometric quantization) as the absence of a first-order (full)
polarization [14]. In that case, the definition of full polarization in the GAQ can be
generalized so as to include operators in the left-enveloping algebra of the original group.
Higher-order polarizations may also be introduced to quantize a given non-anomalous
physical system in a representation different from the one provided by the existing first-order
full polarization., This is precisely the way in which the standard second-order Schrédinger
equation {in configuration space) appeats in non-relativistic quantum mecharics.

This paper is organized as follows. In section 2 we quantize the non-relativistic spinning
particle, in both momentum and configuration space, as an example that shows how the
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GAQ including higher-order polarizations is applied. Section 3 is devoted to the study
of the relativistic spinning particle. We first obtain the minimal, canonical representation
of mass m and spin j of the Poincaré group in momentum space. Then we introduce
a higher-order polarization characterizing the quantities related to the configuration-space
representation and provide explicit solutions to the pseudo-differential polarization (and
motion) equations. Finally, we consider the classical solution manifold and Noether
invariants as classical counterparts of the previously introduced operators. In section 4
we comment on several particularities of our higher-order polarization mechanism. An
appendix revises the irreducible representation of the SU(2) group according to our group-
theoretic methods.

2. The free non-relativistic spinning particle

The quantization of the free non-relativistic particle in momentur space by means of GAQ
was already considered in the first paper where this formalism was introduced [2] (see also
[31). The starting point was of course the eleven-parameter group, consisting of a one-
dimensional central extension of the Galilei group parametrized by the mass. The rotation
subgroup there played the mere role of a spectator in the sense that none of its variables
were dynamical in character. The characteristic subgroup was composed of rotations as
well as time translations [3] (in [2] rotations were not even considered). Nevertheless,
as is thoroughly discussed in the appendix, although the subgroup SU(2) does not have
non-trivial central exitensions, some co-boundaries allow us to extend this subgroup in a
way that resembles a non-trivial extension parametrized by a half-integer j (see [16] for
the analogous case of SL{2,R)). Thus, two out of the three parameters of SU(2) can be
considered as being the canonically conjugated coordinates that account for the spin of the
free particle,

Let us consider, therefore, a group law for the extended Galilei group with a central
extension provided by a non-irivial co-cycle, parametrized by the mass m, as well as a
pseudo-cocycle (in reality a co-boundary) parametrized by the spin j. This co-boundary
is generated by a Jocal linear function on the parameter 8 of the Cartan subgroup U{1) €
SU(2) (not to be confused with the central U(1) subgroup). In this section, and for the sake
of simplicity, we shall fix the spin quantization axis (see appendix) in the z direction, i.e.
n = (0,0, 1). The group law is:

"=t 4t
' =2’ + R}z +v't
v"=v' 4+ R'(e)v (1

1
e =y1-e2ae+V1-/4e'+ 36" xe
;” - ;-';eim{z'R’a-ww'R'u-:-u’l/zyﬁezuw"_ar_o,

The rotations R(e) are given in (A24),
The left-invariaat and right-invariant vector ficlds are, respectively:

.. 3 1, 3
X{;,=§+v-5;+-2-mvza X@,=R§;

- d
Xt =R(5;,-+m:nE) 2



5378 V Aldaya et al

- .8
X=X Xg =it =8
¢
and
o 9 8
R . R -
X(n-'é? X&) = I TMvE
- d J
X8, = —+t—+motE 3
v dx
" - 3 3
_ TR SUE
Xo=Xo W+ax —+vx o
. .
X(’;) IEE = &,
From (2) the quantization form we can derive

&

2
®=—m.dp--§;d:+es"‘2'+ it @

where @YU has been given in (A26).
Unlike the case for spin zero {3], where all the rotation generators were included in the
characteristic subalgebra Gg , here for j 3 0 we have only

Go = (X5, X5} &)
thus indicating that here the variables €; and &, will play the role of a coordinate—momentum
pair (in connection with this, see the Poisson ctructure in {A27),(A29), which could be

translated here by adding the spatial part of the Noether invariants: this will be done later
for the Poincaré case).

We shall take the following full polarization for the extended Galilei group with spin:

p"—— {féj, X-I{I;;}! f(Lé:‘l)s ié!) +i-§{il))' (6)
The polarization conditions X* ¥ = 0,vX¥: &P , when acting opn
functions which satisfy the condition EW = iy, that is, ¥,z v,t,€) =

¢V (x, v, 1, €), give the following wavefunctions for the free non-relativistic particle with
spin:

W = e w1 ¥ (e)p(v) 7

where x” Vs given in (A13), and it is assumed that the change (A18) to coordinates €
is made in x”’ The operators X} (e.5) acting on the functions (7) give a representation of
SU()®U(1). The most common operators Jg, J/, and J_ can be obtained from XF tey DY
using the relationships (A14) and (A18). Clearly the action of the J operators on the j and
g indices of the Galilei wavefunctions is the same as in (A15).

The globality argument given after (A15) translates here as a whole; in particular, j in
(7} has to be a half-integer and is identified as the spin of the particle. The subindex p
ranges from —j to §.

In order to compare these Galilean results with the relatmstlc ones, let us see the cxphcu
form of the action of the physical operators E™= in X8, P"= XX, K™= (ih/m)XR,

and J™= —iR(XR ie) T JnB) (where superscript ‘nr’ stands for ‘non-relativistic’):
Erp(v) = fmvp(v)  PUp(v) = mop(v)

. LX) @)
K™p(v) = '53_6“’(”)
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and

" a
Jnr¢(v)xif)(e) = [uihv X % — ik (X(E) + :;n)] p(v)x (J)(e)_ )

Before considering the quantization in configuration space we must comment that since
{11 was published, the concept of polarization has been generalized, mainly due to the fact
that richer (more general) ideas were needed to deal with the problem of anomalous systems.
These ideas have been explained in detail in [14], so that here we intend to relate briefly
what is relevant for the cases examined in this paper.

The characteristic subalgebra usually includes all variables which are not part of any
coordinate~-momentum pair of the dynamical system. The polarization subalgebra will
then consist of the characteristic subalgebra and half of the rest of the variables, so to
speak. In this case, we say we have a full polarization. In retrospect we can say that all
the polarizations used in [1] were full polarizations, Jt may occur, however, that some
variables which are not included in any coordinate-momentum pair, are not included in
the characteristic subalgebra either. This type of structure, i.e. non-full polarization or just
polarization (some examples have been given in [14]), would lead to representations which
are not fully reduced, and thus an improved technique of guantization has to be employed.
These ideas have been used to characterize and solve anomalous systems, although they
can also be applied to non-anomalous systems if we want them to appear in a different
‘representation’. For instance, there is no (first-order) full polarization that permits the
quantizauon of the free particle in the x-representahon This ‘representation’ wouild require
Xk () t0 be in the polarization subalgebra, but then X%, would have to be excluded since
{Xm: tuJ] (.1:)

As mentioned in the introduction, it is possible to generalize the notion of (first-
order) polarization by allowing the operators in the left-enveloping algebra to belong to
the polarization. Thus, we define a higher-order polarization as a maximal subalgebra of
the left-enveloping algebra of G excluding the central generator and containing a first-order
polarization.

Starting from the non-full, first-order polarization ¢ (o) (E,), X (’;z, +iX é.)), we can

modify ¥ @)+ by adding higher-order terms to it, so that it can enter the polarization
subaigebra. We then obtain:

P (X("I’ X(G:’)’ X(fz) + IX(G"), “l (X(z') ) (10)
The new wavefunctions are
W) = gemtimvy ) (&) d(m, ) (11)
where ®(x, ¢} satisfies the Schrédinger equation
a® B?
f— = ——V2,
h ] 2m (12)
Note that the wavefunction (11) could be rewritten as
WY = gemlimMe gl ImT y () (e)y () (13)

where we have factorized out the ‘function’ e™/*®V" The functions x5 (€)x(x) then
constitute the minimal carrier space for the irreducible representations.
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3. The free relativistic spinning particle: position operator

3.1. The momentum space representation

We now face the more interesting problem of the relativistic spinning particle. Unlike the
case of the Galilei group, as was discussed in the introduction of [1], the 10-parameter
Poincaré group law does not admit a central extension by a true co-cycle. Nonetheless,
since it allows the application of GAQ, a pseudo-extension by a co-boundary is adequate
to simulate a central extension, thereby providing a solution. This has been done in the
appendix for the SU(2) case. It is also the approach that was used in section 2 of [I}, and
the approach we shail use in this section.

To obtain a group law for the relativistic free particle that provides non-irivial
representations of the rotation part of the group we shall proceed exactly as we did in
the preceding section for the non-relativistic case. Thus, we shall depart from the 10-
parameter Poincaré group law, pseudo-extended ‘by the mass' and pseudo-extended *by the
spin’. More precisely, we shall take the Poincaré group law given in [1] (equations (A.3)
and (A.4)),

g'=8*g g=("¢p) (14)
and for the central part we take

" = ' e85 2] (0" —6"-F) 1)
where &£,(g’, g) was given in [1], equation (A.8), and n = ¢ is the function of € that

appears in (A20). Of course, 8” should now be written using (14). From the group law in
(14), (15) we derive the left- and right-invariant vector fields (note that p® = \}mzcz + p2)x
g P8 P P
mc

@ = mc3a® | me da

,—R(E)[%‘é‘?{ﬁ+%+mp@ + _mc)PE}

O R

+mc(p_0+r"c) R_l(e)” X (’?‘Lﬂsum +jn) (16)
Xl = X550 X = ‘C -
f£°1=“§%‘ x$;=’;—a+PE
(]
0 1] 0

X&,—fﬁ,su‘2’+ax§_+px% "é}_ﬂlt,é%__zg

The non-zero commutation relations between right vector fields are:

1
[X‘al)s (p[)] '—aff( (00] ha)
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[X(aﬂl’ X(p.']] bl (R;f]
[X(plp (p‘)] 2 277” (Xtei +]nkh-l) (]8)
X3 (et ~£n] = —my. (X(Ek, +fnkE)
[X(dfja (.’:J]] = —ﬂ.jkgﬁ,k)
[Xﬁa'v Xctnl = —mefpr)-

The quantization form obtained from (16) is

@:—(p“-mc)da°-—(a+ E%—Snw)).d %_:1;)_;35‘ % {19
The condition ixd® = 0 = ix® determines the characteristic subalgebra
Go = (X{o 1 - XE)) (20)
and we have a full polarization, which we take as
P = Kooy Kay X =i x X(g). @)

The polarization conditions XL ¥ = 0,¥ XL e P together with E¥ = iV give the
following wavefunctions:

Wit = gemi P -mI oD e, p) 22)
(bt.i) —_ XL‘;)(EN’(P)

where again x” ! are the functions given in (A13) under the change (A18) in the argument.
Note that ®(p) is the same for all \lf” ), regardless of spin. It is remarkable that, until now,
the quantization of the pseudo- extended Poincaré group law in (14},(15) has run completely
parallel to the non-relativistic (Galilei) case that was done in section 2. Special heed should
be paid to the structural similarity between the wavefunctions in (7) and (22). Indeed,
consideration should be made of the fact that in the relativistic case there is some sort of
mixture between boosts (p} and rotations (€), as is apparent from the commutation relation
in the third equation in (18), a fact without a non-relativistic counterpart. It is surprising
then that no mixture appears in the relativistic wavefunctions where € and p have clearly
factored out.

The puzzle above is solved when we evaluate the action of the physical operators on
the wavefunctions, since it is on the operators that the mixture between boost and rotation

parameters will take place. The results here, conceming X2 | will differ markedly from the

)
third equation in (8). Let us define ?

E=nkly P=-nkly; K=ukl; J=-u(X8 +ng), 23)

The action of the other operators on the wavefunctions ®’ (¢, p) in the second equation
in (22) is

EQY = (p° - mcyol)
Po =poy
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j¢rj) = [—-iﬁp % % +!"!E(h] i) (24)
3 h
P = 1h—-— S T R
K [ mc 3p * me(pd + me)” ]

where

5N Pl = __i[x-‘.-:)sum + an] B (25)

it is now helpful to note that the energy operator £ gives the energy p? with the rest
energy mec subtracted. On the one hand, we expected this from the beginning, as we are
using a pseudo-extension. On the other hand, this constant term allows the non-relativistic
limit to be directly performed in the expressions we have up to now: e.g. the first equation
in (24) goes to the first equation in (8) under ¢ — oo, and so does the exponential part of
the wavefunction in {22) to the exponential part in (7). For the use of spin j == 1/2 we can

write as in the appendix x‘_ll"fg = ( :} ), X{}f’ = ( (1) ), and taking into account (A30),

K for instance, can be rewritten as

¢ 3 h o

K =in —_— x p}. 26

=12 mcdp  me(p® +me) ( p) (26)

This will be recognized as the boost generator in the canonical representation of the
Poincaré group [17].

3.2. The configuration space representation. higher-order polarization and position
operator

The quantization of the relativistic particle in configuration space, when the spin is absent,
parallels the Galilean case. There is no first-order polarization containing X a2y and XL ¢y and
a higher-order polarization must be introduced which includes a higher-order left operator

XL,FO, This operator becomes

_ (s
Rbal® = Rbg, + = | B — me] @n

where

" 2
Pt = \/mzcz # (%5

and leads to a Schridinger-like equation, once the whole polarization PHO =
(XL.HO, XL, XL,) has been applied. We find

¥ = e VRPeP(g, o°) (28)

where ¢ satisfies

L0 ] , 82
1!‘15&3—{ ?za —mc}q’ (29)

In the ¢ — oo limit, (29) reproduces (12). A simple redefinition ® = d’elime/Ma’ of
the wavefunction will restore the rest mass energy.
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We must note in passing that the infinite-order character of X (’;o JHO is due to the restriction
to the upper sheet of the mass hyperboloid and that a second-order operator exists,

X(a") X(a"} + 2: [(X(a"))z - ()?(La))z] 30y

which leads to the Klein—Gordon equation, We can say that the polarization containing (27)
gives a highest-weight representation, whereas the one containing (30) gives a representation
characterized by a given value of a Casimir operator of the group. This duality is also valid
for more general non-compact Lie groups.

The quantization of the relativistic spinning particle has an additional difficulty since
neither the ¥ L(,J gcnerator nor XL (p) are allowed to enter the polarization. In fact, the

commutator [X i X p”] contains a U(1) term. Then, a higher-order operator X o must
also be 1ntroduced and we shall see that this is the origin of the position operator in our
approach.

A solution to the conditions defining a higher-order polarization is given by the following
set of left operators:

. 1

HO _ ;%L HO AL — L HO L_ L L L _: oL
PHO = (XL HO, QL =X 0= R e ULer)z x XE, XL —inx X)) 3D
where .
= T (PEIRL, + 25, P (32)
Bt = xfe, +inX%, x RE, (33)

The configuration-space wavefunctions are:

¥ = 1”704 (a, a)x /o) (34
where
2 ; ' Vx8§ h?
O¢xY' = |a—ih— - — o (35)
X [ BO(PO 4 me) 2P :]¢x

and PO¢xy = [vm2c2 —1*V21px) and § = RE. Now we have factorized out the
“function’ (a pseudo-differential operator indeed) e~/*"?C, Special attention should be paid
to the non-commutativity of the exponential factors, for which the relation ete? = eA+#
obviously does not hold.

The action of the quantum operators preserves the structure of the wavefunction,
allowing us to factorize out the exponential factor:

Egx = (ﬁo _ mc) ox
Pox) = —inV ¢x

o Px8 ihP]¢ s (36)
i

me me  me(PO+me)  meh?

Tox =[8+axPox.
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In order to see the role played by QL RE and B2, we can construct the right version
of these operators or, more precisely, Q=inQ R=irRR and $ = —i#$* and let them
act on the wavefunctions (34). We find

Qoxl =|a- ‘3—013] x>
[ po
- S . 37
N PxS
R {J) + o = [F]
X < PO(PO 4 mc)}
Soxy =[I-RxP|ox. (38)

To compare with standart results [13, 20} we give the expressions of these operators in
the momentum space representation:

Py . d p .
) (jy
QoY _m(%—m)q

hp x BH .
i __ (1))
Ro (Q + P g C)) o) (3%

B = (3 +px fi) ot

suggesting the interpretation of these operators as the Newton—Wigner, mean position and

mean spin operators, respectively [18-20]. A natural interpretation that now arises refers to
S as the intrinsic spin:

§=F+PxQ. (40)
3.3. Classical solution manifold

The classical phase space is parametrized by Noether invariants which are given in this
approach by the contraction of the right-invariant vector fields with the 1-form ®. Among
them, only the basic ones, that is, the Noether invariants associated with vector fields outside
the characteristic subalgebra (the kernel of the Lie algebra co-cycie), are independent. The
remainder can be expressed in terms of the former,

From (17) and (19) we see that

Flan =iz, © = —(p° ~ me) = —(P° - mc)

F{G)Ef}?&,eszP (41)
i A SUD (Sxp)xp _ ,
Floo=ize @ = Fig +GXD+W=JHJTL
0 G
P a Sxp mc
Fipy = = ——| = — —_— |1 — = —
P ‘x(m@ mc[ a+p°p+mc(p°+mc)( + PU):I K

where § = F )V + jn, introduced in the appendix, is also a conserved quantity, and the

definitions P° = —Fz0)+me, J = Fi)+ jn eliminate the effect of the pseudo-extensions.
Using the notation

a® SxP me SxP
Q=05 f P mo PN T PPt
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Sx P me

= ) — e T 42
R=Q POUPO L ey PO “2)

P x (8 xP)

=8 e

o PO(P? + mce)

we can rewrite the Noether invariants associated with rotations as

J=QxP+S=RxP+X. (43)

The last formula shows that we can think of §), R, § and X as the classical counterpart
of the previously introduced quantum operators Q, B, § and .

Also the Poincaré—Cartan form, ®@pc = ©® — d¢/i¢, can be written in a more natural
way,

(Sxmn)-dS
G+8 n

which justifies the assumption that € (€D is the position variable (operator). The orbital
part of the form @pe here appears in Darboux’s coordinates. The spin part also appears in
a canonical form on the sphere §2 = j2.

We note finally that the intrinsic angular momentum S turns out to be the spatial part
of the Pauli-Lubanski vector W# [17] boosted with parameters —P, § = W — (Wo/(P° 4
mc))P and 3 = W /PO,

=—Q-dP+ (44)

4, Concluding remarks

In this paper we have obtained the irreducible representations of the Galilei and Poinceré
groups associated with m #% 0 following a group-theoretical approach, and derived well-
known expressions for position and spin operators. We would like to stress that the
relevant feature is precisely the power of the higher-order polarization technique, which
can be applied in exactly the same way to more general systems where the corresponding
expressions are unknown. For instance, it can be used to study the relativistic spinning
harmonic oscillator [21].

We must remark, nevertheless, that the higher-order polarization technique involves
tedious calculations for which symbolic computation of approximate series is often required.
In the present case, the series defining the operators XZ,H0 and X '@ have been summed
up without special difficulty. For more general systemns, even the group law, required as
the starting point, has to be computed order by order.

Another drawback of the present approach is the ambiguity in finding solutions to the
polarization subalgebra itself. In the case of the relativistic partlcle. for instance, different
polarizations can be found for which the rotations operators X & ey are replaced by higher-
order ones. However, equivalent polarizations lead to representations which are related by
integral transforms.

Finally, we want to mention that the treatment of the representations associated with
massiess particles could be made in a similar manner provided that the symmetry group
is modified in an appropriate way. The conformal group, or a contraction of it, is more
suitable as the starting symmetry for the present approach (see [1])

Appendix A. Irreducible representations of SU(2)@U(1)

As the starting point for the application of the GAQ, we want to derive a parametrization
of 8U(2) in which a principal bundle structure of SU(2) itself over its quotient by a U(l)
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subgroup is manifest. This U(1) subgroup should not be confused with the U(1) group by
which SU(2) is later centrally (pseudo-)extended.
To obtain such a parametrization, we shall write the matrices of SU(2) as U(§)=
*
( 2 _;in ) with the condition £'¢ = |z)]* + |z2)* = 1. It is apparent that an element of
i
SU(2) is a point on the sphere §*  C2. The projection 7 : § — £1a& goes from §* onto
the sphere 52 (¢ are the Pauli matrices), as (§'0)? = 1, and v~} (§10§), V&, is isomorphic
to the set U(1) of SU(2) matrices with zz = 0. This U(1) subgroup acts from the right by
the usual multiplication U”= U’U, leaving each fibre #~'(§o) invariant.
Locally we take a chart for the base manifold §2 with parameters z, z*, and for the fibre
we take 8 = —ilogn, n € U(1) € SU(Z). These parameters are related to the non-minimal
parameters z;, z» through

_ {1+« _ 2 _ .
z;--‘f 77 22--1“_{_’:2’? Kk =1~ 2zz*, (Al

{A)) translates the matrix multiplication law into a group law

7. =2 Z

= 12+ 'z — T [z*zrn—z + Z*'znzl

K
'

z*n= z*’nz"'ric’Z*'— lix[zzmnz_i_zrz*n—-z] \
2 \/1+x’/1+x 11 [
"= - — * Fow LTS
Kk _\/]"}"K”{ 2 2 n 2Y 1+« 1+x(zznn+zz an) (A2)

K" =k — (22072 + 2V 7).

The group law for SU(2) in (A2),(A3) is now centrally pseudo-extended by means of
the co-boundary generated by the function €%/ = 52/, The central part of the group law
for SU(2)®U(1) is thus

¢ =" ¥, (A3)

From the group law in (A2), (A3) we now obtain the right-invariant vector fields

xR, = -2(‘:;2:5 [(1 +x)2£; - 2z*2£; + iz*a% - Zijz""c."]
Xk, = -2-(%:;{-3 l:(l +x)2-aa; - 2z2§; - iz% + 2isz.‘] (Ad)
Rl = o x;;,=i;%as

and the left-invariant vector fields
Ry =i —?({fmfaJr-l‘-f:—xs
X = "% * 2(111 P5) 'aa_a “Ti:t 43y
Xt = x% - 21'2% + 2iz“£; X&) = i;% = E.
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The right fields in (A4) fulfil the following commutation relations:
[Xum X&) = -2XE,

(X8, X&) = +21X(z., (A6)
[X&) Xl = =5 X5, +iB.
From (AS5) one derives the quantization form
. de
= *dz — zdz* ik — 1 =
8 |+K(z dz —zdz*)y +2j(k — 1)d8 + : (AT

and then, using the right-invariant vector fields, one gets the following Noether invariants:
Fia) = i,-{g”@ =2j(1 —«)
F{ZI = ii,ga@ - ijz* (AS)
ﬂz-) = ii{:“@ = "ijz-

The pseudo-extension of the group law of SU(2) in (A2), which yielded the group
law (A2), (A3) of SU(2)@U(1), has tumed SU(2) into a true dynamical system where the
variable which plays the role of ‘time® is 8 (see [16] for the related case of SL2,R)RU(1)).
'The characteristic module is precisely given by the lefi-invariant vector field associated with
this ‘time’, that is, Go = (X{,). Furthermore, the coordinates (z, z*) play the role of a
coordinate-momentum pair for this dynamical system.

A look at (A4) shows that we have a full polarization for SU(2)®U(1), which is to
include the characteristic module and ‘half’® of the canonically conjugated coordinates. We
shall take the polarization as

(-Xm]a X(z)) (Ag)

The equivariance condition EWY) = W' factors the ¢-dependence: W' =
£ ®Y(z, 2%, ). The most general solution to the rest of polarization conditions, X, W'/ =
XL W) =0, is a combination of functions of the form

oz, 2, 8) = (1 + &) [e (1 + 1) '2*] (A10)
where v ranges from 0 to 27, Writing i = v — j we get
Nz, 2%, 0) = (1 + k) Fe ikt it (A11)

and the explicit form of the representation given by the action of the operators (right fields
in (A4)) on wavefunctions ¥/’ = z ®Y 1ooks like

X6 = 2iGu+ e
X&) = -(.i - wwl (A12)
X v = —(j +wwd,.

The normalized wavefunctions x” ! are given by

Jtu

= (= I)Lial"[ 26— +5) Lo

FEy . (A1)
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and defining the operators
= —/2iX§,
= —v2i%E, (Al4)
Jo= -(X{?,,+2; )

(note the constant term in Jp, which eliminates the effect of the pseudo-extension), we get
the typical representation

Foxt? = ViG+ D = ple+ Ox
Jx9 = JiG+ D - pe-Dx, (A15)

Jox” b= px

We wish to discuss briefly the question of the globality of results such as (A10). To be
more precise, we may wonder to what extent the solutions to certain differential equations,
which have been written in local coordinates, have a global validity, In this example the
answer is clear since we can use the “global coordinates” zi, z; and rewrite (A10} in terms
of them. Thus, for instance,

DY) = 2 V1228 7i "V g2y (A16)

is analytic only for 2/, v € N In the general case we must resort to a Fock-like construction
of the space of states. Starting from just one giobally defined function, the vacuum |0}, the
states obtained from it by the action of the creation operators (which are global quantities)
are global.

In the rest of this appendix we are interested in expressing the previous results on
SU)&U(1) in terms of the coordinates € which were used in {1] as well as in the main
text. The change of coordinates is given by

Ue) = /1 — e2/4+ %o’ € (Al17)

{where o are the Pauli matrices and €2 = ¢ - €), or more explicitly

5= +" & = /T— ¢4 +ie/2 (A18)

f 2 : ]
n= 7 +xze'ﬁ = {—ey -+ 16)/2.

The change in (A18) translates (A2) into the group law

" = /1 —5’2/4€+\/1—62/4e'+%£'xe (A19)

which is the same that can be found in (A.4) of [1], setting @ = 0 and € ~» —€/2. In
addition, we shall proceed in a covariant way so that the formulae concerning the Poincaré

group can be dealt with more easily. To this end we write the function n that generates the
¢o-boundary as

_ 1 —52/4:E~_in-e/2

1—r2/4

(A20)
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where 2 = (€ x n)? has been defined and n is an arbitrary, yet constant, unit vector which
afterwards will indicate the spin quantization axis.

From the group law in (A19), and (A3) with n = el given by (A20), one derives the
left- and right-invariant vector fields

. 3 1@ i .

Ry = 1=~ sex g+ 10 (3/T=&an xe+(c-m)e) & (A2D)
; 3 1 3 i

R — €2/ 4 — - - {1 /12 — (e - =

= T=fatyex oo~ 1 (2\/1 2/dn x € — (€ 'n,)e)u (A22)

with the commutation relations
[RE,, &E,)1 = —nf (X&) + imZ). (A23)
Using the SO(3) element associated with (A17),
R(e) = (1 — €2/ — /1 — €2/4e x +-;—(e- Ye (A24)
we define the functions § = j R# intimately related to the Noether invariants. They satisfy

S§? = j2. In terms of the new variables the right vector fields, the quantization form and
its differential are written as

- /] J
R el —_— e =
Xm—Sx[nx(nxas):l+j+s_nnx(5xn) (A25)
nx8).-d8§ d&
= e B A26
© j+8n +i§ (A26)
n - (dS A dS)
= — A27
a9 n-S (A2D)

It is easy to check that in_f{;'d@ = () and that the polarization operators (A9) are both

contained in the vectorial expression X5, —in x XL,
From the quantization form (A26) we derive the Noether invariants:

Fe)= t',-q:)@ =5~ jn. (A28)

The Poisson bracket induced on the sphere §2 = j2 by d@ reproduces the algebra of
SU2):

{8, 85} = n,f Se. (A29)

It is worthwile 1o calculate the action of the operators XX, on the normalized
wavefunctions given in (A13). It is understood that the change of coordinates in (A18) has
been performed in the wavefunctions; for instance, the vacuum |0} is written as (j +n-S)/

save for numerical factors. Writing xf_‘lflz; = ( (1) ), X:;f’ = ( (1) ), we get the matrix
form of XX, for j =12

i,
=12 2

where o are the Pauli matrices.,

Xk +jnE (A30)
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