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Abslrad. The quantization of the free relativistic spinning particle is revised on the h i s  of 
a gmup approach to quantizadon In momentum spa=, the wavefunctions provide the minimal 
canonical representation of mass m and spin j of the P o i M  group PI . The quantization in 
mnfigwation space requires, as in m y  other physical systems, polarirati~~ of highcr-order 
type. ’this higherader polarization technique turns out to be a natural hamework for studying 
localizability and to provide a position opcratw. 

1. Introduction 

Some years ago a considerably detailed analysis of the quantum dynamics of the (spinless) 
free relativistic particle was developed in [l]. The aim of that paper was to clarify the 
group-theoretical structure of this elementary system. The starting point of such a study 
was clearly the 10-parameter Po incd  group, or. more precisely, a pseudoetension of 
it. The wavefunctions provided the (spin-zero) irreducible repmentations of the Poincad 
group in momentum space. 

The framework used in 111 is a group approach to quantization (GAQ) [2,3], a formalism 
in which a Lie group (or supergroup) law is the only input of the theory. Essentially, GAQ is a 
definite prescription to go from a group law, which is intended to be the ‘relevant’ symmehy 
of a given physical system, to its unitary irreducible representations in a Hilbert space made 
up only of functions on the group manifold, thus achieving the complete s_olution to the 
quantum-mechanics problem. More precisely, GAQ starts with a Lie gmup C containing a 
preferred U( 1) subgroup as for the case of a U( 1) central extension 141 (or pseudo-extension). 
This U(1) subgroup accounts for the usual phase invariance of quantum mechanics. The 
mere existence of this subgroup allows us to distinguish between two types of variables in 
the group: those whose corresponding generators produce a central term on the right-hand 
side of their commutator, and the remaioder.The former corresponds to the set of canonically 
conjugate pairs of coordinates and momenta, and the latter to variables playing a role similar 
to that of time. Time and rotations a ~ e  examples of this second type of (nondynamical) 
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variables fEr the spinless free particle. From a mathematical point of view we-can say that 
the group G is a principal bundle [5] with structure group (or fibre) U(1). If G is a central 
extension of G , the kernel of the Lie algebra co-cycle [6] E: : B x g + W, which is known 
as the characteristic subalgebra & , generates the subgrccup of nondynamical variables. 

GAQ then continues taking complex function W on G that are homogeneous of degree 
one in E U(1) (equivariance condition). This means, in differential form, that BW = iW, 
where B is the U(I) generator. The Hilbert space is now obtained by imposing the so-called 
full polarization condition, i. e., a maximal restriction that can be imposed on functions W so 
as to fully reduce the quantum representation. A full polarization P is a maximal subalgebra 
of left-invariant vector fields ZL containing & and excluding 6, and the wavefunctions 
must be annihilated by X L  in P . This definition generalizes the analogous concept in 
ordinary geometric quantization [7-IO] in that our P contains the non-symplectic variables 
associated with Ge . S i e  right-invariant vector fields commute with left ones, the former 
leave the Hilbert space invariant and achieve &q.quantum representation. The left-invariant 
one-form 8 dual to B also g e n d i z e s  the quantization form of geometric quantization ( d o  
is no longer a symplectic form and its kernel, or more precisely its characteristic module, 
Ker dQ n Ker 8, is generated by a basis of & ). 

Thii paper is devoted to the study of the spin under GAQ to account for a group-theoretic 
formulation of relativistic quantum mechanics without any reference to fermionic variables. 
We study first, in section 2, the non-relativistic case by introducing a pseudo-extension 
of the SU(2) subgroup (SU(2) is semi-simple and therefore all the central extensions are 
trivial) of the Galilei group parametrized by a (necessarily) half-integer j .  The objective 
of this extension is to take two SU(2) generators out of the characteristic subalgebra and to 
convert the corresponding parameters to a canonically conjugated pair of a coordinate and 
a momentum ,which provides the spin degrees of freedom. We have included an appendix 
devoted to the general study of the SU(2) representations on the basis of GAQ. 

The introduction of a SU(2) pseudo-co-cycle on the Poincar.5 group is carried out in 
section 3 without any special difficulty. The only difference with respect to the Galilean 
situation is the complexity of the group law and the fact that now a central term appears 
on the right-hand side of a commutator between two boosts. We find that the resulting 
qilantum representation is the minimal canonical representation of mass m and spin j of 
the Poincar.5 group P$ [11-13] in momentum space (we discard the discrete elements for 
the sake of simplicity and consider only a single orbit). Although the wavefunctions factor 
out in orbital and spin Pam, as in the non-relativistic case, the operators mix both parts 
properly. 

The quantization of the relativistic spinning particle in configuration space requires, as 
in many other physical systems, the introduction of the concept of higher-order polarization, 
a concept originally introduced to solve anomaly problems in both finite- [I41 and infinite- 
dimensional quantum systems [151. 

The anomaly problem can be viewed in any geometric approach to quantization (this 
is an unsolvable problem in geometric quantization) as the absence of a first-order (full) 
polarization 1141. In that case, the definition of full polarization in the GAQ can be 
generalized so as to include operators in the leftcnveloping algebra of the original group. 
Higher-order polarizations may also be introduced to quantize a given non-anomalous 
physical system in a representation different from the one provided by the existing first-order 
full polarization..This is precisely the way in which the standard second-order Schrijdinger 
equation (in configuration space) appears in non-relativistic quantum mechanics. 

This paper is organized as foUows. In section 2 we quantize the non-relativistic spinning 
particle, in both momentum and configuration space, as an example that shows how the 
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GAQ including higher-order polarizations is applied. Section 3 is devoted to the study 
of the relativistic spinning particle. We first obtain the minimal, canonical representation 
of mass m and spin j of the Po incd  group in momentum space. Then we introduce 
a higher-order polarization characterizing the quantities related to the configuration-space 
representation and provide explicit solutions to the pseudo-differential polarization (and 
motion) equations. Finally, we consider the classical solution manifold and Noether 
invariants as classical counterparts of the previously introduced operators. In section 4 
we comment on several particularities of our higher-order polarization mechanism. An 
appendix revises the irreducible representation of the SU(2) group according to our group- 
theoretic methods. 

2. The free non-relativistic spinning particle 

The quantization of the free non-relativistic particle in momentum space by means of GAQ 
was already considered in the first paper where this formalism was introduced [2] (see also 
[g). The starting point was of course the eleven-parameter group, consisting of a o n e  
dimensional central extension of the Galiiei group parametrized by the mass. The rotation 
subgroup there played the mere role of a spectator in the sense that none of its variables 
were dynamical in character. The characteristic subgroup was composed of rotations as 
well as time translations [3] (in [2] rotations were not even considered). Nevertheless, 
as is thoroughly discussed in the appendix, although the subgroup SU(2) does not have 
non-trivial central extensions, some co-boundaries allow us to extend this subgroup in a 
way that resembles a non-trivial extension parametrized by a half-integer j (see [16] for 
the analogous case of SL(2,R)). Thus, two out of the three parameters of SU(2) can be 
considered as being the canonically conjugated coordinates that account for the spin of the 
free particle. 

Let us consider, therefore, a group law for the extended Galilei group with a central 
extension provided by a non-trivial co-cycle, parametrized by the mass m, as well as a 
pseudo-cccycle (in reality a CO-boundary) parametrized by the spin j .  This co-boundary 
is generated by a local linear function on the parameter 6 of the Cartan subgroup U(1) E 
SU(2) (not to be confused with the central U(1) subgroup). In this section, and for the sake 
of simplicity, we shall fix the spin quantization axis (see appendix) in the z direction, i.e. 
n = (0.0, 1). The group law is: 

t" = t' + t 
x " = z ' + R'(e) x + v ' t  
V" = V '  + R'(C)V 
€ ~ i = ~ ~ E + ~ ~ 4 € ~ + - j € ~ X €  1 

tn = S,feimlz'R'u+rtu'R.u+"~/Zl/he~J[~'-B'-) 

The rotations R(e)  are given in (AN). 
The left-invariait and right-invariant vector fields are. respectively: 
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and 

From (2) the quantization form we can derive 

where 

characteristic subalge.bra &, , here for j # 0 we have only 

has been given in (A26). 
Unlike the case for spin zero [3], where all the rotation generators were included in the 

Ge = (fh), f,L,,,) (5) 
thus indicating that here the variables €1 and €2 will play the role of a mrdiinate-rnomentum 
pair (in connection with this, see the Poisson ;tructure in (A27),(A29), which could be 
translated here by adding the spatial part of the Noether invariants: this will be done later 
for the Poincar6 case). 

We shall take the following full polarization for the extended Galilei group with spin: 

(6) 

The polarization conditions .fL Q = 0,Vg' E'P , when acting on 
functions which satisfy the condition ZQ = iq ,  that is. W(t,s,v,t,e) = 
<W(x, v, t ,  e), give the following wavefunctions for the free non-relativistic particle with 
spin: 

(7) 

where x:') is given in (A13). and it is assumed that the change (A18) to coordinates e 
is made in x;". The operators .tE,<) acting on the functions (7) give a representation of 
SU(2)6U(I). The most common operaton .fo. I+ and 1- can be obtained from 2;). by 
using the relationships (A14) and (A18). Clearly the action of the .f operators on the j and 
f i  indices of the Galilei wavefunctions is the same as in (A15). 

The globality argument given after (A15) translates here as a whole; in particular, j in 
(7) has to be a half-integer and is identified as the spin of the particle. The subindex g 
ranges from - j  to j .  

In order to compare these Galilean results with the relativistic ones, let us see the explicit 
form of the action of the physical operators I?= $if:,, PN= -iTtfk), K"'= ( i i / m ) f &  
and += -$i(f& + jn&) (where superscript 'nr' smds for 'non-relativistic'): 

- L  f L  f L  P = (ft,, x,,,, ($). +if;+ 

ql4 (I) - - <etm"l'x:j'(e)p(v) 
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and 

Before considering the quantization in configuration space we must comment that since 
[I] was published, the concept of polarization bas been generalized, mainly due to the fact 
that richer (more general) ideas were needed to deal with the problem of anomalous systems. 
These ideas have been explained in detail in [14], so that here we intend to relate briefly 
what is relevant for the cases examined in this paper. 

The characteristic subalgebra usually includes all variables which are not part of any 
coordinate-momentum ‘pair of the dynamical system The polarization subalgebra will 
then consist of the characteristic subalgebra and half of the rest of the variables, so to 
speak. In this case. we say we have a full polarization. In retrospect we can say that all 
the polarizations used in [ I ]  were full polarizations. It may occur, however, that some 
variables which are not included in any coordinate-momentum pair, are not included in 
the characteristic subalgebra either. This tvpe of structure, i.e. non-full polarization or just 
polarization (some examples have been given in [14]), would lead to representations which 
are not fully reduced, and thus an improved technique of quantization has to be employed. 
These ideas have been used to characterize and solve anomalous systems, although they 
can also be applied to non-anomalous systems if we want them to appear in a different 
‘representation’. For instance, there is no (first-order) full polarization that permits the 
quantization of the free particle in the x-representation. Thii ‘representation’ would require 
f& to bc in the polarization subalgebra, but then fil would have to be excluded since 

As mentioned in the introduction, it is possible to generalize the notion of (first- 
order) polarization by allowing the operators in the left-enveloping algebra to belong to 
the polarization. Thus, we define a higher-order polarization as a maximal subalgebra of 
the left-enveloping algebra of G excluding the central generator and containing a first-order 
polarization. 

Starting from the non-full, firs-order polarization (ii), f,L,,,, f$ ,  + if$)), we can 
modify fil,  by adding higher-order terms to it, so that it can enter the polarization 
subalgebra. We then obtain: 

[fi), fk)I - fk). 

The new wavefunctions are 
ylll = ge-lh/Wv.z ( j )  

II x, (e)@(=.t)  

where @(=, t )  satisfies the Schr6dinger equation 

Note that the wavefunction (1 I )  could be rewritten as 
yL11 = ~e-(imlft)ume(ffif/2”)pl x, ( j )  ( M 2 )  (13) 

where we have factorized out the ‘function’ e‘iRr/hnt)v. The functions ,y; ’ (e)~(z)  then 
constitute the minimal carrim space for the irreducible representations. 
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3. The free relativistic spinning particle: position operator 

3.1. The momentum space representation 

We now face the more interesting problem of the relativistic spinning particle. Unlike the 
case of the Galilei group, as was discussed in the introduction of [I], the 10-parameter 
Poincar6 group law does not admit a central extension by a true co-cycle. Nonetheless, 
since it allows the application of GAQ, a pseudoextension by a CO-boundruy is adequate 
to simulate a central extension, thereby providing a solution. This has been done in the 
appendix for the SU(2) case. It is also the approach that was used in section 2 of [l], and 
the approach we shall use in this section. 

To obtain a group law for the relativistic free particle that provides non-hivial 
representations of the rotation part of the group we shall proceed exactly as we did in 
the preceding section for the non-relativistic case. Thus, we shall depart from the 10- 
parameter Poincar4 group law, pseudoextended 'by the mass' and pseudo-extended 'by the 
spin'. More precisely, we shall take the Poincar6 group law given in [ 11 (equations (A.3) 
and (A.4)). 

g" = gt * g; g = (a", r.p) (14) 

and for the tend part we take 

y = ~~te(im/li)tcs'.nre2ij(B"-8'-BL (15) 

where .$&', g) was given in 111, equation (A.8). and q = e" is the function of e that 
appears in (AZO). Of course, 0'' should now be written using (14). From 
(14), (15) we derive the left- and right-invariant vector fields (note that po 

- L  - P O a  p a  PO XI,,) - -- + - ' - + ( p  -mC)-E 
mcaao mc aa mc 

P 61 
1 a (po  -mc) 

P@.Z)+  mc 

p x + jn E 
" R  - P O a  1 X@) - -- - 

mc ap mc(n0 + mc) 
a0 a a . a  +--+--+ mcaa mcaao 

The non-zero commutation relations between right vector fields are: 

mc 
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The quantization form obtained from (16) is 

The condition ixdO = 0 = i x 0  determines the characteristic subalgebra 

and we have a full polarization, which we take as 

P = (i&,, 2&,. 2k, -in x 2 k ~ .  

The polarization conditions f L  W = 0, V f L  E P together with EW = i W  give the 
following wavefunctions: 

where again x,? are the functions given in (A13) under the change (AH) in the argument. 
Note that @@) is the same for all WLj’, regardless of spin. It is remarkable that, until now, 
the quantization of the pseudo-extended Poincad group law in (14),( 15) has run completely 
parallel to the non-relativistic (Galilei) case that was done in section 2. Special heed should 
be paid to the structural similarity between the wavefunctions in (7) and (22). Indeed, 
consideration should be made of the fact that in the relativistic case there is some sort of 
mixture between boosts @) and rotations (e), as is apparent from the commutation relation 
in the third equation in (18). a fact without a non-relativistic counterpart. It is surprising 
then that no mixture appears in the relativistic wavefunctions where e and p have clearly 
factored out. 

The puzzle above is solved when we evaluate the action of the physical operators on 
the wavefunctions, since it is on the operators that the mixture between boost and rotation 
parameters will take place. The results here, concerning i&,, will differ markedly from the 
third equation in (8). Let us define 

i? = i h i & ;  P = -%,YE); I;: = ihfg,; j = -ih (icI + jna) . (23) 

The action of the other operators on the wavefunctions O ~ ) ( E ,  p )  in the second equation 
in (22) is 

I?@!’ = ( p o  -me)@;)  
Po$,= p@;l 
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It is now helpful to note that the energy operator b gives the energy po with the Test 
energy mc subtracted. On the one hand, we expected this from the beginning, as we are 
using a pseudo-extension. On the other hand, this constant term allows the non-relativistic 
limit to be directly performed in the expressions we have up to now: e.g. the first equation 
in (24) goes to the first equation in (8) under c + 03, and so does the exponential part of 
the wavefunction in (22) to the exponential part in (7). For the use of spin j = 1/2 we can 

write as in the appendix x!‘”’ - - ( b ), x$*’ = ( ). and taking into account (A30), 

K for instance, can be rewritten as 

(E X P )  
. PO a fr K = Ih-- - 

m c a p  mc(po+mc) 2 
This will be recognized as the boost generator in the canonical representation of the 

Poincard group 1171. 

3.2. The confrguration space representation: higher-order polarization and position 
operator 

The quantization of the relativistic particle in configumtion space, when the spin is absent, 
parallels the Galilean case. There is no fust-order polarization containing fhol and f&(”,,. and 
a higher-order polarization must be introduced which includes a higher-order left operator ,?knFo. This operator becomes 

where 

and leads to a Schrijdinger-like equation, once the whole polarization PH0 = 
(fko,””. f&,. ,ff,,) has been applied. We find 

y = ge-lVfilP’a@(a aO)  (28) 
where @ satisfies 

In the c + 00 limit, (29) reproduces (12). A simple redefinition = @’e(”cfi)ao of 
the wavefunction will restore the rest mass energy. 
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We must note in passing that the infinite-order character off$,,"" is due to the restriction 
to the upper sheet of the mass hyperboloid and that a second-order operator exists, 

which leads to the Kle ina rdon  equation. We can say that the polarization containing (27) 
gives a highest-weight representation, whereas the one containing (30) gives a representation 
characterized by a given value of a Casimir operator of the group. This duality is also valid 
for more general non-compact Lie groups. 

The quantization of the relativistic spinning particle has an additional difficulty since 
neither the f& generator nor f&) are allowed to enter the polarization. In fact, the 
commutator [ X & , ] >  f~p,l] contains a U(1) term. Then, a higher-order operator f&yo must 
also be introduced and we shall see that this is the origin of the position operator in our 
approach. 

A solution to the conditions defining a higher-order polarization is given by the following 
set of left operators: 

where 

The configuration-space wavefunctions are: 

where 

and Poq5x:" = [ J n ] 4 x L 1 )  and k = fiF$ll. Now we have factorized out the 
'function' (a pseudo-differential operator indeed) e-ci/hlPo. Special attention should be paid 
to the non-commutativity of the exponential factors, for which the relation eAeB = eA+B 
obviously does not hold. 

The action of the quantum operators preserves the structure. of the wavefunction, 
allowing us to factorize out the exponential factor: 

k 4x2) = (P  - mc) 4x;jl 
j5 4x;j) = -ihv 4xW 

P 
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of these operators or, more precisely, Q 
act on the wavefunctions (34). We find 

In order to see the role played by QL, RL and gL. we can construct the right version 
ihQR, R %RR and = -%eR and let them 

(38) 

To compare with standart results [ 13,201 we give the expressions of these operators in 
the momentum space representation: 

( j  + R) 

suggesting the interpretation of these operators as the Newton-Wigner, mean position and 
Fean spin operators, respectively [ 18-20], A natural interpretation that now arises refers to 
S as the intrinsic spin: 

S = j + @ x Q .  (40) 

33 .  Uassical solution manifold 

The classical phase space is parametrized by Noether invariants which are. given in this 
approach by the contraction of the right-invariant vector fields with the I-form 0. Among 
them, only the basic ones, that is, the Noether invariants associated with vector fields outside 
the characteristic subalgebra (the kernel of the Lie algebra co-cycle), are independent. The 
remainder can be expressed in terms of the former. 

From (17) and (19) we see that 

where S F,c~su(21 +in, introduced in the appendix, is also a conserved quantity, and the 
definitions Po E - F r 8 )  +mc. J = F(e, + jn eliminate the effect of the pseudo-extensions. 

Using the notation 

ao S X P  mc S X P  

Po mc(PO+mc)  Po Po(Po + mc) 
=-K+ Q = a - - P -  
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mc - -K 
P O ( P O  + mc) - P O  

SXP R-Q- 

P x (S x P) 
PO(P0 + mc) 

E = S -  

we can rewrite the Noether invariants associated with rotations as 
J=QxP+S=RxP+X. (43) 

The last formula shows that we can think of Q. Q S and as the classical counterpart 

Also the Po incMar tan  form, Opc = 0 - dC/ic, can be written in a more natural 
of the previously introduced quantum operators Q, k and E. 

way, 

which justifies the assumption that Q (Q) is the position variable (operator). The orbital 
part of the form Opc here appears in Darboux’s coordinates. The spin part also appears in 
a canonical form on the sphere S2 = j ’. 

We note finally that the intrinsic angular momentum S turns out to be the spatial part 
of the Padi-Lubanski vector W” 1171 boosted with parameters -P, S = W - (%/(Po + 
m c ) ) P  and E = W/Po. 

4. Concluding remarks 

In this paper we have obtained the irreducible representations of the Galilei and Poincer6 
groups associated with m # 0 following a group-theoretical approach, and derived well- 
known expressions for position and spin operators. We would like to stress that the 
relevant feature is precisely the power of the higher-order polarization technique, which 
can be applied in exactly the same way to more general systems where the corresponding 
expressions are unknown. For instance, it can be used to study the relativistic spinning 
harmonic oscillator [21]. 

We must remark, nevertheless, that the higher-order polarization technique involves 
tedious calculations for which symbolic computation of approximate series is often required. 
In the present case, the series defining the operators n$,:o and *&yo have been summed 
up without special difticulty. For more general systems, even the group law, required as 
the starting point, has to be computed order by order. 

Another drawback of the present approach is the ambiguity in finding solutions to the 
polarization subalgebra itself. In the case of the relativistic particle, for instance, different 
polarizations can be found for which the rotations operators f k ,  are replaced by higher- 
order ones. However, equivalent polarizations lead to representations which are related by 
integral transforms. 

Finally, we want to mention that the treatment of the representations associated with 
massless particles could be made in a similar manner provided that the symmetry group 
is modified in an appropriate way. The conformal group, or a contraction of it, is more 
suitable as the starting symmetry for the present approach (see [I]). 

Appendix A. Irreducible representations of SU(2)6U(l) 

As the starting point for the application of the GAQ, we want to derive a parametrization 
of SU(2) in which a principal bundle structure of SU(2) itself over its quotient by a U(1) 
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subgroup i s  manifest. This U(1) subgroup should not be confused with the U(1) group by 
which SU(2) is later centrplly (pseudo-)extended. 

To obtain such a parametrization, we shall write the matrices of SU(2) as U(t)= 

( :t :; ) with the condition etf E lzi12 + 122l2 =: 1. It is apparent that an element of 

SU(2) is a point on the sphere S3 C Cz. The projection r : + etut goes from S3 onto 
the sphere S2 (U are the Pauli matrices), as = I ,  and z-i($tue), Ve, is isomolphic 
to the set U(I) of SU(2) matrices with 22 = 0. This U(1) subgroup acts from the right by 
the usual multiplication U"= VU, leaving each fibre z-'(tfut) invariant. 

Locally we take a chart for the base manifold S2 with parameters L ,  z*, and for the fibre 
we take 9 = -i log q ,  q E U( 1) c SU(2). These parametem are related to the non-minimal 
parameters 21. z.2 through 

(AI) translates the matrix multiplication law into a group law 

K" = K'K - (Z'Z*q-2 + 2"Zq2). 

The group law for SU(2) in (A2),(A3) is now centrally pseudo-extended by means of 
the co-boundary generated by the function ezjR = q z j .  The central part of the group law 
for SU(2)&J(I) is thus 

,y = f ~ ( , , ~ ~ , , l - i q - 1 ) 2 i .  (A31 

From the group law in (AZ), (A3) we now obtain the right-invariant Vector fields 

and the left-invariant vector fields 
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The right fields in (A4) fulfil the following commutation relations: 

[fpHl, fzll = -Zi8& 

[fkl, f&,1 = +ZifG.) (A6) 

r f [ ) . q 4  = --XI@, ’ - R  + i s .  
2 

From (AS) one derives the quantization form 

(A7) 

and then, using the right-invariant vector fields, one gets the following Noether invariants: 

i j  di- @ = -  (z*dz - zdz*) + 2 j ( K  - I)d0 + - 
I + K  1i- 

F(R, iyR 8 = Z j ( l  - K )  
( H  > 

(AS) .. * F,,, = iy* 8 = 2l.Z 
,i) .. Fez.) itR 8 = +JZ. 
(I., 

The pseudo-extension of the group law of SU(2) in (AZ), which yielded the group 
law (AZ), (A3) of SU(Z)&J(I), has turned SU(2) into a true dynamical system where the 
variable which plays the role of ‘time’ is 0 (see [I61 for the related case of SL(2,%)&J(l)). 
The characteristic module is precisely given by the left-invariant vector field associated with 
this ‘time’, that is, &, = (fk,). Furthermore, the coordinates (2.2’)  play the role of a 
coordinate-momentum pair for this dynamical system. 

A look at (A4) shows that we have a full polarization for SU(Z)@U(l), which is to 
include the characteristic module and ‘half of the canonically conjugated coordinates. We 
shall take the polarization as 

P = CX,:), fkJ. (-4% 

The equivariance condition EW(jr = iY1jl factors the (-dependence: W‘j) = 
cQcjl(z, z*, e ) .  The most general solution to the rest of polarization conditions, f ~ l W c j t  = 
f k l W ( j l  = 0, is a combination of functions of the form 

~ L j ) ( z ,  z*,e) = ( I  + K)] [e-*”’(l+ K ) - ’ Z * ] ”  ( A W  

where v ranges from 0 to 2 j .  Writing p = U - j we get 
Q;I(~, p ,  0) = (1 + K)-Pe-ziwiMz*w+I 

and the explicit form of the representation given by the action of the operators (right fields 
in (A4)) on wavefunctions looks like 
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and defining the operators 

I 
j o  = - + Z ~ E )  

2 

(note the constant term in &, which eliminates the effect of the pseudo-extension), we get 
the typical representation 

We wish to discuss briefly the question of the globality of results such as (AIO). To be 
more precise, we may wonder to what extent the solutions to cenain differential equations, 
which have been written in local coordinates, have a global validity. In this example the 
answer is clear since we can use the “global coordinates” 21. 22 and rewrite (A10) in terms 
of them. Thus, for instance, 

( A W  

is analytic only for 2 j .  v E N In the general case we must resort to a Fock-like construction 
of the space of states. Starting from just one globally defined function, the vacuum IO), the 
states obtained from it by the action of the creation operators (which are global quantities) 
are global. 

In the rest of this appendix we are interested in expressing the previous results on 
SU(2)@U(I) in terms of the coordinates E which were used in [ I ]  as well as in the main 
text. The change of coordinates is given by 

(j) - 2j-v12,2ijS j-U tu 
Q” - 21 22 

I U(€) = Jm + zu . E 

if = 

(where U are the Pauli matrices and c2 = E  E), or more explicitly 

= 4- -+ ic3/2 

The change in (A18) translates (AZ) into the group law 

which is the same that can be found in (A.4) of [I], setting (Y = 0 and E + - ~ / 2 .  In 
addition, we shall proceed in a covariant way so that the formulae concerning the Poincd 
group can be dealt with more easily. To this end we write the function q that generates the 
co-boundary as 



Higher-order polarizafion on the Poincari group 5389 

where r2 = (e x n)Z has been defined and n is an arbitray, yet constant, unit vector which 
afterwards will indicate the spin quantization axis. 

From the group law in (A19), and (A3) with q = eis given by (MO), one derives the 
left- and right-invariant vector fields 

with the commutation relations 
[ f ~ ~ , ,  ?:,,I = -qii. R ( f R  + i n k = )  

Using the SO(3) element associated with (A17), 

we define the functions S = jRn intimately related to the Noether invariants. They satisfy 
S2 = jz .  In terms of the new variables the right vector fields, the quantization form and 
its differential are written as 

n . (dS dS) 
2n.S 

dO = 

It is easy to check that i,,ii,dQ = 0 and that the polarization operators (A9) are both 

From the quantization form (A26) we derive the Noether invariants: 
contained in the vectorial expression ft6, - in x fk,.  

F,,, i j R  0 = S - in. (A28) 

The Poisson bracket induced on the sphere S2 = j 2  by dB reproduces the algebra of 

{S i ,  S i )  = vi;&. (A291 

It is worthwile to calculate the action of the operators 2:) on the normalized 
wavefunctions given in (A13). It is understood that the change of coordinates in (A18) has 
been performed in the wavefunctions; for instance, the vacuum 10) is written as (j+n.S)j 

save for numerical factors. Writing xel,* (1’2) - - ( ). xi):” = ( ), we get the matrix 

form of I:, for j = 112: 

1.1 

SU(2): 

where U am the Pauli matrices. 
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